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INTRODUCTION

Positron emission tomography (PET) is a growing technique for medical

diagnosis. Special purpose machines have been developed that achieve good

resolution in two-dimensional (2-D) slices of the head or abdomen with

relatively intense radioactive sources. The emphasis on these specialized 2-D

devices seems to have been driven by computational advantages of

reconstruction as much as by medical need. However, the original PET geometry

of 2 planar Anger cancras (1) continues to have application if the emitter

objc(t is large or irregular in shape, or otherwise fails to fit the 2-D

devices. Reconstruction of full 3-D images has been reported by many authors

(2-8). However, these methods have limited ability to deal with low counts

(6), or to use the full data set (2,3,8).

Recently, a 2-D PET reconstruction method has been described by Shepp and

Vardi that uses maximum likelihood (ML) (9-11). That general statistical

approach allows one to use all available physical knowledge to reconstruct an

image that has the highest probability of generating the actual data set.

Attempting such an optimization is a formidable process since each of the

thousands of volume element intensities is an unknown random variable that

co-varies with each other. The expectation-maximization (E-M) (11,12)

algorithm for likelihood maximization has been shown to possess many desirable

statistical and practical aspects that allow approach to ML estimates in

reconstruction tomography (9-15). The problems with Fourier inversion

artifacts such as negative estimated activity (16) is avoided, and all

available data can be used. In 2-D devices, the ML formalism has been

extended to efficient recovery of regions of interest (17) and to estimation

of kinetics from a time sequence of images (14,15).
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Here we report application of the ML approach to the full 3-D problem.

We were motivated by a study attempting to estimate the distribution and

kinetics of 13N 2 gas in human divers (related to mechanisti of decompression

sickness) over time spans of many isotope half-lives. Thus, out application

had vanishingly low count raites from a complex emitter with high activity in

areas not of interest (18). In this paper we first pose the general problem,

specify the reconstruction procedure, and then examine the algorith.

performance with a series of simulated images. These images include a simple

set of large rectangular solid modules, a complex emitter sirilar to a human

experiment (18), and the complex emitter with added instrumeint noise (19).

Performance is assessed by several statistical measures as well as by image

appearance. A brief comparison is made to an algorithm proposed by Lim et al.

(5,20), which is called iterative Weighted Backprojection (WB).

Reconstruction Geometry and Algorithm

The acquisition device is a pair of large (40 cm diam), stationary Nal

crystals with parallel planar surfaces outside the emitting source, and

connected in coincidence (21). Photons satisfying an energy ana coincidence

criterion trigger an A/D converter to sample and store a pair of coordinates

from both the A and B camera detectors (coordinates called Xa, Xb, Ya, Yt).

Calibration of the device is a problem discussed elsewhere (19), but

calibration and camera performance parameters can be included in a ML

algorithm; below, we show that they can seriously affect an image.

To organize the problem by the Shepp-Vardi approach, we first discretize

the original data according to which X-Y area element )n each camera face the

photons arrive from. In practice, we use areas 1.33 cm on a side (a 32 x 32

square grid slightly circumscribes the circular area.) Although there is some

controversy about the effect of early discretization (16,28), the limited

2



resolution seems to justify this step. (The actual spatial resolution of any

detector depends on counting statistics, and our choice of resolution elerenlts

should be considered essentially arbitrary). Each combination of en ;area on

one camera face with an area on the other is termed a detector "tube", d, in,

order to use the Shepp-Vardi nomenclature. In 2-D applications, #wi- olf these

tubes correspond to a physical detector. The total number of such tube,, 1),

is quite large: 324 - 106 in our application, so most tubes actually have

zero events.

The "image" is also discretized into a number of boxes, b, set on a

rectangular grid. We use the same X-Y grid as for the detector tube,, and a Z

grid of 8 boxes deep between camera faces. With the 45.6 camera faoe

separation in our experiments, the Z-direction boxes are then 45.6/b = 5.1 cr,

high. This choice acknowledges the relatively poor Z-direction resolutil

that is inherent in the device that does not sample events emitted at a large

angle from the camera axis (1). The total number of boxes in the image, B, is

therefore 32 x 32 x 8 or about 8000. (In practice, we place the cyliudrical

imaging space image within the square array so only 6,038 boxes can be part ()I

the image).

The reconstruction problem can now be posed: estimate the B random

variables L(b), the emitter density in each box, given the data set n(d), tile

recorded number of events in each detector tube. The maximum likelihood

estimate of this problem is the set of L's that maximize the overall

probability of achieving the actual recorded data set. Derivation and

properties of the mathematical problem are not presented here; the reader is

referred to the excellent presentations of Shepp and Vardi (9-11) and of Lange

and Carson (12). The likelihood function, f, of the data, n, given, the

current emission parameter estimates, L, can be constructed by using the

3



Poisson distributioni on emissions from each box (10):

D

f(n L) = [ [ -L(d) + n(d)'ln{L(d)1 - ln{ n(d)! I 1 [I]
d=1

where: B
L(d) E L(b).p(b,d)

b=1

The final term in Eqn. [I] does not depend on the estimated emission

parameters, L, and can therefore he ignored. Each term p(b,d) is the

probability that a positron emission from image box, b, will be recorded in

detector, d. This matrix incorporates aspects of both physics and detector

performance, which can change in different applications. Shepp and Vardi

ipplied the expectation-maximization (E-H) approach to achieving a ML estimate

(9-12), and obtained the following algorithm:

D
n(d).p(b,d)

L(b)new = L(b) ol d * [21
d=1 Z L(b')old.P(b',d)

b'=1

where b = 1, 2, 3, ... B

The outer summatica in Eqn. [2] is over all possible tubes; the inner sum in

the denominator is over all the boxes, B', which have a finite p(b,d) for the

specific tube, d.

Since this is an iterative procedure, an initial set of L(b) must be

provided. The E-M algorithm has been proven as monotonically convergent

(11,12), so in principle any nonzero starting image will eventually lead to

the ML image. For convenience, we chose a value for each box equal to the

average intensity of the entire data set (i.e., a uniform gray image). Some

increase in the tate of convergence appears possible by starting with a better

initial image (16), such as from a backprojection procedure.
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The large p(b,d) matrix is the key item that incorporates the physical

and instrumental characteristics of a given detector and emission source.

Each term is actually a compound probability:

p(b,d) = pl(b,d)*p2(d) / p(b) [31

where:

pl(b,c) = p(emission from b enters detector tube d)

p2(d) = p(tube d is recorded)

p(b) = total probability that emission from box b is recorded

in any detector

The second factor in Eqn. [3], p2, is a solid angle consideration depending

3
only on tfli tube itself, which in this geometry is proportional to cos (00,

where u1 E the angle between the tube direction and the camera axis (line

connecting the centers of the 2 detectors). A further correction is used for

tubes that fall along the circular perimeter of the camera face: the 2nd

factor is multiplied by the fraction of the tube area contained within the

detector. This sharp edge cutoff seems to be responsible for some of the edge

artiiacts seen in the images. Point-to-point non-uniformities across the

camera face (determined by flood source images) could also be included in

p2(d) at an increased computational cost. The denominator in Eqn. [3] is the

overall probability that an emission from box b is detected anywhere on the

detector, and is proportional to the camera spatial efficiency (22).

We have used two different choices for the first term, pl, of the p(b,d)

matrix elements. The simpler p(b,d), "Clean p(b,d)", uses the volume

intersection of box b with tube d similar to the original approach of Shepp

and Vardi (9,10). Such a choice uses assumptions of uniform emitter density

in each box, no scattering of photons, no attenuation, and a perfect detector

response.

5



For our more complex p(b,d), some of the camera performance degradation

already reported (19) are included. Both photon scattering and digitization

problems have been found to contribute to a blurring of a point suurce image

even when the emission plane is known a priori. Specifically, the

distribution of events in the emission plane (established by simple

backprojection) is well-described by a normal distribution superimposed on a

low-level uniform density (19). Typical parameters are a standard deviation

of 2 cm and a uniform density of 15% of the events. Therefore, our seccild

p(b,d) allows events in tube d to have arisen from many surrounding boxes

located up to 3.5 box units away from the tube axis. The weighting of p1 is

proportional to the normal + uniform distribution cut to the distance where

the distribution has fallen to 3% of its peak. This approach is clearly only

an approximation to the actual physics because not all, probably not even

most, of the spatial degradation happens in the plane of emission. However,

it was computationally possible, therefore allowing a calibration procedure

(19) and the image reconstruction to be performed with internal consistency.

We will refer to this as the "Fuzzy p(b,d)."

The reconstruction is computationally intensive. The total p(b,d) matrix

allows over 108 entries, which we found impractical for storage, though using

the full matrix has been explored by others (13). For each data set, we first

rearranged events in a structured order by tube direction. This allowed us to

only examine tubes with nonzero activities that are slightly less than the

total events in the data set. Then at each iteration of Eqn. [2], first the

term p2(d), then the pl(b,d) in Eqn. [31 was calculated for each family (same

angle a) of tubes. The acnominator, p(d) in Eqn. [3], was calculated only

once by summing the numerator of Eqn. [3] for each box over all tube

directions, then retrieved as necessary from a storage array.
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We also compared some reconstruction with the iterative Weighted

Backprojection method (WB) proposed by Lim et al. (5,20). In the WB method,

each event is partitioned into all boxes intersecting the detection tube with

a weighting proportional to the box activity L(b) estimated on the previous

iteration. Unlike most Fourier transform methods, all data can be used and

the estimated L(b) are intrinsica]]y non-negative. As in the original work

(5,20), we used simple planar intersection rules (at the Z-direction

mid-points of the same tomographic planes) instead of more complex rules for

box-tube intersection. In all cases, we applied a camera spatial efticiency

correction between each iteration.

Simulation Procedure

Spatial locations in all three dimensions for the simulation were in the

precision of our camera's ADC unit: 0-127 units - 0.3 cm/unit. Each defined

positron emitter object was rectangular with all boundaries matched to edges

within the 32 x 32 x 8 reconstruction matrix. The simulation process used a

hierarchy similar to our view of the emission physics. Each rectangular

object volume was multiplied by its emission density (an integer from I to 60)

in order to obtain a scalar proportional to the chance of an emission actually

originating in that specific rectangular object. The first randomization used

this scalar to choose which rectangular object the current emission came from.

The next 3 random numbers established the X,Y,Z location within the

rectangular object for the simulated emission. A spherically uniform

direction was generated to simulate emission of the annhilatio, photons. The

intersection of this direction with each camera face was calculated to see

whether the event was "recorded" by the camera. The fraction of emissions

recorded is proportional to the overall camera spatial efficiency for this

7



rectangular box, p(b) (22). The simulated data from this process we call the

"Clean Sim."

To deal with camera calibration performance and scattering in the

simulation, two additional features were added to cause the simulated event to

be placed in the "wrong" tube. A Gaussian error of specified SD in a random

direction was applied at each camera face for every intersecting event. In

addition, every 7th event was placed at a uniformly random location within the

camera A/D range to simulate the "white noise" component of carhera performance

(19). These data were termed the "Fuzzy Sim."

A DEC pseudorandom number generator giving a uniformly distributed

variable was used in all these processes (23). Standard transformations (24)

were applied to get uniformly distributed angles and normal deviates when

needed. The process was checked by simulating some point sources and

comparing detection efficiency to an analytical expression foi efficiency

(22). The simulations required about 16 min per 10,000 detected events on a

PDP 11/70. Programs were set to stop upon arrival at a predetermined total

number of detected events (from 2,000 to 100,000). An auxiliary output file

recorded the total events actually emitted from each rectangular box, S(b).

This simulated image could then be used to assess the performance of

reconstruction. Because of the high computational cost, simulations were

generally not repeated.

In addition to likelihood itself, we assessed image recovery by a root

mean square error (rms) and a weighted root mean square error (wrms) based on

simple or weighted sums of squared deviations. These measures require a known

image for comparison and thus are useful only for simulation, not for unknown

objects.

8



B/

rms =E 1/B L(b) - S(b) ] 1/2 [41
bwl

B L(b) -5(b)]12 /

wrms 1/B [51
b=l [ Max (S(b),l)

As before, the L-array contaiiis the recovered emission detisity, while the

S-array has the aLtual simulated density. The rms is an average deviation

from the simulated image in counts per box. The wrms is an attempt to account

for one known major source of uncertainty in a real image: Poisson counting

statistics. For each independent Poisson process, such as the emissions from

one box that is detected at all, the expected precision (standard deviation)

of that count can be used for weighting error summaries. For large counts,

Poisson standard deviation is the square root of the raw count. (in Eqn. [5]

the denominator is the square of this expected standard deviation.) We

realize that for a simulation the use of this formula is not precise, both

because of low counts where the square root is not a good approximation, and

because we know S(b) exactly after the Poisson uncertainties of emission and

detection have occurred. Subject to these limitations, the wrms is used as an

average dimensionless error per box, where wrms = 1.0 would be image recovery

to the expected limit of counting statistics. A wrms error much larger than

1.0 means more variability than in the simulation. A wrms error much smaller

than 1.0 means the algorithm is "too precise" in attempting the

reconstruction. Image recovery more precise than the original simulation has

recently been noted with the E-M algorithm in some 2-D reconstructions

(28,29).

9



SIMULATIONS and RESULTS

Simple Object

The objective for using this first object was examination of how the

reconstruction algorithm would recover object boundaries, especially when

using small total count numbers. A secondary objective was development of a

battery of test statistics to describe image recovery. Figure 1 is a sketch

of the simple object simulated. The object was a set of 10 large modules, 9

to 91 boxes each; adjacent modules were simulated to have intensity contrast

differences of about 2 going in both X and Z directions. In addition, a large

low-intensity object (module G in Fig. 1) was used to add out-of-focus events

that would complicate the reconstruction of modules in the next Z-plane

(modules H,I,J). No part of the modules extended into the Z-planes closest to

each camera face (levels 1 or 8). Three sets of simulations were done with

2000 to 50,000 total counts to span the count range of 4 to 659 counts per

individual box. Simulation was "clean", that is without inclusion of the

camera degradation. The reconstruction only used the first of the p(b,d)

methods described above (Clean Recn: no error from camera).

Performance ot both the ML and WB reconstruction algorithms for this

simple object are shown in the next several figures. All 8 levels of the

original 50,000-count simulated object and the 50th iteration by both

reconstruction methods are shown in Fig 2. All images have been corrected for

camera efficiency by dividing each box count by p(b) such that the center

boxes have the actual count at each level, and boxes extending out radially

have a progressively exaggerated count. The edges are successfully recovered,

but with less blurring for the ML procedure than for WB. Very few of the

counts are distributed outside the boundaries of the original objects. Any

counts assigned to levels 1 and 8 are erroneous as no source locations were

10



SIMPLE OBJECT

-- CAMERA 8

RELATIVE F
MODULE BOXES INTENSITY

A 9 5LEVELS
3 9 2
C 9 I
D 20 2
E 20 4
F 20 20
G 91 1
H 9 I -

1 9 2
J 9 5 CAMERA A

X

Figure 1. Simple Object Sketch. The 10 large modules (9 to 91 boxes each)

were simulated to have intensity contrast differences of about 2

going in both X and Z directions. The large low intensity object

(module G) was used to add out-of-focus events to complicate the

reconstruction of modules in the next Z plane (modules H,I,J). No

part of the modules extended into the Z planes closest to each

camera face (levels I or 8).
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simulated there. Recovery of detail is slightly better in mid levels than

close to either camera face. Note also a bit of increased "graininess"; the

individual boxes have more apparent variability about their mean intensity

than was simulated in the original object. The occasional speckle in the

outer corners of the images is a reconstructed box density that has been

amplified by the efficiency correction whose magnitude is greatest in the

corners.

Recovery with successive iterations are presented next. As shown in the

top of Fig. 3, overall likelihood improved substantially for the first 20

iterations of the ML algorithm, Eqn. [2], and only slowly thereafter. Scme

finite improvement was noted even after 200 iterations. Log likelihood

differences less than order I are not important in statistical applications

with few parameters, so image improvement after 20 to 50 iterations appears

marginal. The likelihood stabilizes with little subsequent improvement in

later iterations with smaller data sets. Thus, an arbitrary rule icr

declaring the "convergence" of the final image would be needed. This stopping

rule was examined for all the simulated reconstructions. The WB method

produced images that initially improved as measured by likelihood but then

decreased in likelihood. The decrease occurred on later iterations in data

sets with higher total number of events in the image.

In the bottom of Fig. 3 are plots of both rms and a wrms error for the

simple object. The figure shows that these criteria improve (i.e., decrease)

with subsequent iterations using ML, but very slowly ifter 20 iteiations.

Curves that show an initial rise indicate that early iterations produce images

with poorer statistics than the original, uniformly gray initialization.

Weighted rms error was always less than raw rms, and eventually decreased to

about a factor of 3 higher than the "perfect" value for a Poisson process. In

13
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other cases with fewer total events, we noted that the rms and wrms errors

passed through a minimum and then increased with subsequent Iterations. This

means that the image originally got better by all criteria, then the image

improved by ML while becoming worse by the rms and wrms criteria. The WB

method stabilized within 15 iterations, but had more than a four-foic poorer

performance than ML after image convergence.

For this image, all reconstructions were rather successful in avoiding

assignment of events to the planes (simulated as empty) nearest the caplera

face. For example, at 30 iterations less than 3% of the ML reconstructed

counts and 5-6% of the WB counts fell in the empty planes. Subsequent

iterations decreased the traction even lower.

Individual object recovery and the graininess problem were examined in

more detail. Module H in Fig. I was chosen as the example in Fig. 4. This

level may be most susceptible to corruption because of the large distributed

object immediately above it. The upper half of the figure shows recovery of

average counts for the 9 boxes in that module. Using ML, only 50% of the

original counts are recovered for the lowest count rate simulated, but over

95% recovery is achieved for higher count rates. Recovery of counts using WB

was poorer in all cases. (Both reconstruction methods conserve the total

number of counts, so the "missing" counts from recoveries less than 100% are

assigned to other boxes, most of which were simulated as empty.) The bottom

half of the figure is a measure of "graininess", obtained from the standard

deviation ot L(b) over the module. The standard deviation ot reconstructed

counts in the module has been normalized by the standard deviation in the

original simulation so numbers greater than 1 represent more box-to-box

variability or "graininess" than in the original module. By 10 iterations,

the graininesss had exceeded the variability in the simulated module. The
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count variability for Module H of the simple image. Variability

defined as the standard deviation of counts within the module at

each point in the reconstruction, divided by the standard deviation

of the original simulated count distribution S(b).
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images got progressively more grainy for the next 50 or so iterations, even

though the likelihood function was showing a slow improvement (Fig. 2, Top).

If reconstruction was stopped at the point of original graininess, then other

desirable features of the reconstruction would be sub-optimal. This feature

has been recognized as a drawback to ML, perhaps intrinsic to the method

(15,28), and other recent woik addresses means to avoid the problem (25,29).

Our approach, like others, is to stop the reconstruction at a finite number of

iterations. Other areas (not shown) had the same general result: both

recovery of counts and graininess increased with successive iterations. Low

count rate modules had poorer recovery and increased graininess.

An examination of the recovery of counts in the 170 individual boxes for

each simulation also supported the imptessions just described. For low

intensity emission, average recovery is low (average 28% recovery for boxes

emitting 3-20 counts); for intermediate activity recovery is better (average

66% for 21-100 counts); for high activity average recovery is excellent

(average over 90% for 100+ counts). We also compared the distribution of

recovery and compared it to that expected for a Poisson noise-limited process.

Specifically, we calculated bounds of double the Poisson emission error on

S(b) with the expectation that approximately 90% of the boxes should be

recovered within that band if the reconstruction itself added no image noise.

Recovery within that "90% band" did not seem to depend on emission density,

and overall only about half of the boxes were recovered within the band.

Thus, the image noise has a component greater than intrinsic Poisson noise.

Computation times were quite different for the two algorithms. The WB

method required about 4 min per 10,000 counts per iteration, while the ML

method took 55 min for the same task on a PDP 11/70. Using the Fuzzy p(b,d)

17



was another three-fold slower and required us to use a CRAY XMP-2 to complete

the project.

To summarize, initial exploration of the ML algorithm with this simple

object was a success. The intensities in the image boxes were recovered

within 502 or better despite the low count rates, and the statistica]

properties of the reconstruction were considerably better than the WB

algorithm.

Complex Object Simulation

The other mathematical phantom was considerably more complex. For our

application in experimental physiology (18), we needed to simulate a portion

of a human body with a shoulder, parts of a head and trunk, and a hose that

delivered radioactive nitrogen gas to a mouthpiece. The purpose was to study

gas delivery to non-gas tissues, such as the shoulder joint implicated in

diver decompression sickness. The mathematical phantom for this case used 37

rectangular modules of various sizes. As in the simple object, no emissions

occurred in the Z-levels immediately adjacent to the camera face. Since

nitrogen solubility in human tissue is rather low (26), the simulated hose and

mouth were set to emit at a sixty-fold higher intensity than tissue; and the

simulated lungs and trachea at 40 times the tissue level. Together these gas-

filled areas accounted for slightly over 90% of the total simulated emissions.

The objectives here were to apply the insights and measures developed

above to build a reconstruction scheme useful in our difficult application:

complex emitter, low counts, data dominated by presence of non-interesting

objects, and camera performance degradation. We present 3 cases of about

50,000 events: simulation without camera degradation and p(b,d) defined as

tube-box volume intersection ("Clean Sim, Clean Recn"); simulated data with

camera degradation, but with the simple p(b,d) ("Fuzzy Sim, Clean Recn"); and
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the same degraded data but with reconstruction using the less well localized

p(b,d) ("Fuzzy Sim, Fuzzy Recn"). These data were not examined with the WB

algorithm.

The original object and the reconstructed images are shown in Fig. 5.

For orientation, the view is of a supine human. The gas delivery hose goes

across level 7 and connects to a mouthpiece in levels 5 and 6. The lower

right sections of the subject's head is in the upper right quadrant of levels

3-5; his trunk to the right shoulder covers the lower half of levels 2-4. In

the simulation, no activity is simulated in levels 1 or 8. The highest

activity corresponds to the simulated mouth and hose in levels 5-7. Nearly as

high activity is in the simulated subjects' lungs and airways in levels 3 and

4. The object of our physiological experiment is recovery of activity (and

kinetics) in the non-gas lower activity regions mostly in levels 2-4. The

images reconstructed for the 3 treatments of image degradation are also in

Fig. 5. All reconstructions have some degree of inappropriate assignment of

activity to levels I and 8; all recover much of the high activity regions in

levels 3-7; and all have some activity assigned to the desired regions in

levels 2-4. These features will be compared in more detail below.

Other visual aspects of the images deserve comment. All reconstructions

have high-activity speckles and "rings", especially in levels 1 and 8 of

Fuzzy-Clean. The magnitude of the problem has been exaggerated by the image

normalization procedure used, since this device has a spatial sensitivity

that drops sharply along the outer circumference cf the detector and more

gradually toward each camera face (22). To avoid ths efficiency gradient

dominating the image appearance, we divide all box activities by the local

efficiency; the procedure introduces a modest correction in the center of the

camera but is a large correction along the outer circumference. Thus, the
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Information content along the outer edge is intrinsically low and activity in

these regions should be ignored in quantitative interpretation despite its

striking visual appearance.

Another visible problem is the anticipated poor resolution in the Z

direction (along camera axis). The problem is most easily seei, as the "shine"

of hose activity simulated in level 7, but partially recovered in levels 6 and

8. It appears to a lesser extent in the lung regions of levels 2-5. The

Fuzzy simulations are worse than the Clean Sim. We noted that the problem

slowly improved wiLh successive iterations for each case, but even 100

iterations in Fuzzy-Fuzzy did not eliminate the shine entirely.

In all imageb there appears to be a speckle pattern through regions that

were simulated as homogeneous activity subject to Poisson noise. A major part

ot that Is the deliberately low activity compared to many positron images that

uba a thousand-fold higher activity. (Note: the gray scale chosen has

maxin.um contrast near 50 counts per box, an activity certainly subject to

appreciable Poisson noise.) Although no specific smoothing operations were

applied to these images, it is clear that the Fuzzy reconstruction produces a

smoother image. The Fuzzy-Fuzzy appears smoother in the low count regions as

well as the higher activity. However, there appears in all images to be a

graininess problem that will be examined in more detail below.

Specific performance features of the reconstruction will now be examined,

staiting with the likelihood function itself. As in the other simulation and

in other applications of the E-M algorithm, the likelihood function improved

rapidly in the early iterations as seen in the top of Fig. 6. Improvement

thereafter was ever more gradual. The Clean-Clean image converged to a stable

likelihood fastest; that is, it had a large improvement in likelihood in the

early iterations, but could only make small improvements by iteration 50.
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7tis favorable behavior might be expected for a process without the

ambiguities In source added by the Fuzzy processes. By comparison, for both

fuzzy images there was a smaller improvement in likelihood initially followed

by a more sustained increase of 1-10 units per iteration even after 30

iterations, thus showing a slower convergence. Sin~ce both Fuzzy-Fuzzy and

Fuzzy-Clean have the same data, it is possible to compare absolute values of

the likelihood functio, itself by direct use of Fqn. [I]. The very slowly

ccnverging Fuzzy-Fuzzy produces a likelihood poorer by 3,342 units at

itetation 50. Thus, the Fuzzy-Fuzzy reconstruction is statistically poorer

overall than Fuzzy-Clean at that point (this difference is 0.55 pet box so we

are iot certain that the difference is very significant). Since the rate of

Fuzzy-Fuzzy convergence is so slow, it seems possible that "eventually", when

a maximum likelihood is achieved, the Fuzzy-Fuzzy might be a statistically

superior image. Unfortunately, that point did not appear practically

attainable, as another 50 iterations on Fuzzy-Fuzzy only attained 1/20 of the

likelihood discrepancy. Overall, we have the impression that the rate of

.onvergence decreases with the complexity of the reconstruction process. With

the same amount of data, the simple object was reconstructed faster than the

complex object and the Clean p(b,d) converged faster than the Fuzzy p(b,d).

The lower section of Fig. 6 shows the rms error criteria for the 3 cases.

In all 3 cases the rms improved markedly in early iterations, while wrms

increased before establishing a slow improvement. It appears that the E-M

algorithm corrected major deficiencies in the high count areas before settling

Jinto a slow correction over all boxes. Again Clean-Clean had the best

behavior, decreasing both the unweighted and weighted statistics with

successive iterations, and achieving the lowest values of both statistics.

Fuzzy-Clean improved its rmb error for 10-20 iterations, then had no further
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change. As with the rate of convergence by likelihood, Fuzzy-Fuzzy had the

poorest performance by actually increasing its unweighted rms error after 20

iterations. The divergent trends of rms and wrms errors implies a difference

due to the weighting. Specifically it appears that for the Fuzzy-Fuzzy case

later iterations progressively increase graininess in high count boxes with

little impact on the likelihood of the overall image.

Now we will examine the reconstruction of parts of the overall image.

First an edge boundary question: what fraction of the counts are assigned

somewhere within the region with non-zero emissions. Since the reconstruction

preserves the total number of counts, all assignments outside this region are

in error. As seen in the upper section of Fig. 7, the Clean-Clean recovery is

excellent, with nearly 90% recovery by iteration 50. The Fuzzy sets were

poorer with only 62% for Fuzzy-Clean and 77% for Fuzzy-Fuzzy. However, most

of these counts were in areas of simulated high counts (corresponding to gas

hose and subject's lungs) and thus not of physiologic interest. Just

considering the important areas of non-gas tissue (not plotted), the fuzzy

sets were better: both recovered over 80% while the Clean Sim had about 60%.

Thus, it appears that the error-free process does a better job with the high

intensity areas and a poorer job with the low count rate regions of interest.

A similar observation has been made on error-free simulations in 2 dimensions

(28,29). Some of this comparison is artifact, however, as the Fuzzy Sim had a

substantial fraction of counts that were not assigned to any box. (For

generating reconstruction statistics we only use the 84% of the total data in

matrix S(b)).

The next concern is axial resolution: how successful was the

reconstruction in proper positioning of counts along the coordinate connecting

the two camera faces. In prior use of the WB method, we noticed that "hose"
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activity in level 7 was often incorrectly assigned to level 8. Figure 7

(lower panel) has the fraction of total counts assigned to levels I and 8,

where the simulation actually had none. In all 3 cases successive iterations

reduced this incorrect assignment. Best performance was again the

Clean-Clean, but the Fuzzy reconstruction achieved better axial resolution of

the Fuzzy data than did the Clean reconstruction. After 50 iterations, less

than 10% of the total counts were left in the originally empty levels 1 and 8.

Though more difficult to quantitate, other axial degradation features were not

as favorable with Fuzzy-Fuzzy. Specifically, the "lung" activity in levels

3,4 seemed to be more spread into adjacent planes with Fuzzy-Fuzzy compared to

Fuzzy-Clean.

Image recovery in organ-sized regions of multiple boxes varied with

region. Iwo regions are reported in Fig 8. In the lung region (bottom, an

area of 42 boxes in levels 3 and 4 with an average of 85 counts per box

simulated), average recovery varied from about 60% to over 95% for the

different cases, with the Fuzzy-Fuzzy being the best. Many iterations were

required for that recovery, and actually the recovery was increasing even

after 50 iterations. In an area of more interest, the shoulder (top, an area

of 78 boxes in levels 2-4 with 5.6 counts per box simulated), recovery was

70-85% by 50 iterations. Again the Fuzzy-Fuzzy had greatest recovery, and

again the recovery increased steadily through at least 50 iterations (it

achieved 92% after 100 iterations). Other areas examined (but not presented

in figures) had a similar outcome: recovery of 50-150% of average simulated

counts, with most low-activity areas of interest recovering 80-125% and with

the best performance resulting in the Fuzzy-Fuzzy case.

Even with good recovery on average, deviations around the average were a

problem. Figure 9 shows the previously defined graininess for the same areas
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as in Fig. 8. As was seen in the simpler object, the graininess increased

progressively during the reconstruction. For the lung area, the graininess

stabilized at slightly less than the original simulated level for Clean-Clean

and Fuzzy-Clean, while it continued to rise for Fuzzy-Fuzzy. Iii te case of

tie shoulder, the increase was continual through 50 iterations. For that

region of physiological interest, the Fuzzy-Fuzzy had barely exceeded its

original level by 50 iterations. As a general observation, the high count

areas had less of a graininess problem with Clean-Clear. or Fuzzy-Clean

reconstructions, while the problem was least in low count areas for the

Fuzzy-Fuzzy image.

Finally, image recovery on the level of single image boxes was examined.

As with the simple object simulation, average recoveries increased with higher

emission density. Boxes with fewer than 20 counts were recovered very pcorly

(10% or less of the original activity was assigned to those boxes by the

reconstruction algorithm) for Clean-Clean and Fuzzy-Clean, and almost as

poorly (20-30%) for Fuzzy-Fuzzy. Higher activity areas did have a better

average recovery, but only above 100 counts per box did the average reccvery

per box exceed 70%. We also examined how many boxes were recovered within the

approximate Poisson noise limits previously described. Again, no clear

dependence on count rate emerged, except for both Fuzzy simulations whete

nearly all the high count areas were outside the nominal 90% band (only 10% of

boxes within band for 100+ counts). For other cases, 20-30% of the boxes were

within the band. Thus, as in the simple object reconstruction, overall

reconstructed noise was 3 to 4 times higher than expected from the original

Poisson counting error.

DISCUSSION

This exploration of positron image reconstruction was motivated by a
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specific application requiring maximum quantitative recovery of the data (18).

A small amount of published information was available to answer the following

question: With these experimental data and a given reconstruction, how

reliable is the estimated count density in a single box, or in an average from

a small number of boxes?

Most reported reconstruction work is aimed at two-dimensional ring

devices. The typical application has 100+ counts per box and sufficient

overall data to average many hundred counts per detector tube. We had a

different imaging geometry, a low count rate so that the average counts per

detector "tube" was <1, and a structured emitter with a sixty-fold or greater

difference in emitter density.

In this environment, the ML approach was very attractive. It was based

on a solid statistical treatment of the data according to the known (Poisson)

distribution of the original photon emission. It allowed direct use of any

a priori physical, theoretical, or empirical calibration knowledge in the

reconstruction process. And it provided a single goodness-of-fit statistic

(the value ot the likelihood function itself) to judge "convergence" to a

stable "best" image.

In practice, the present implementation of the ML algorithm did not

provide a single perfect reconstruction solution. From both objects

simulated, we learned that a continuously increasing likelihood is not a

continuously "better" image as judged by appearance, root-mean-square

statistics, or measures of graininess in the image. The divergence of

statistics is not particularly bothersome, since diffe:ent statistical

criteria often give different sets of parameters, as happens when one changes

the weighting of the original data. Even after this analysis we accept that

the likelihood is the single best reconstruction performance parameter.
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More disturbing is the tendency of the algorithm to increase

point-to-point variability (graininess) with an apparently small increase in

likelihood. Even if the algorithm was not so computationally intensive, it

would appear desirable to stop the process short of "convergence". A recent

report on ML reconstruction of single photon images shows continued graininess

out to 10,000 iterations (27). In the more modest number of iterations

attempted here, image recovery is substantially complete by a few tens of

iterations. The use of the Fuzzy Recn here introduced an empirical feature

that would seem to encourage smoothing rather than graininess, and there was

some indications from the reconstructions that it did just that. At least, it

delayed the increase in graininess to higher iterations than we were able to

explore. At this point we still have no alternative to an arbitrary rule for

stoppiiig the reconstruction; 50 iterations seems a reasonable choice for the

studies similar to the complex object simulated.

What final expectations can we have for applying this methodology to our

actual experimental data (18)? First, we should use the Fuzzy-Fuzzy

procedure, since ignoring the teal known image degradation will produce

unnecessary image artifacts and compromise quantitative image recovery. Then,

we should expect the image to be unrealistically grainy, with an appearance of

larger point-to-point variation in isotope concentration than is likely to be

physically present. Finally, we expect that average count recovery will be

lower than the emission by approximately 50%, and that actual box

concentration estimates will vary by about a three-fold higher range than the

apparent Poisson counting error.

Is this a satisfactory method for our application? Probably not. The

areas of physiologic interest in our experiments (18) have activities of up to

50 counts per box. With results from the simulation, we might get images of
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about 25 counts and a variability of that same magnitude. Such imprecision

would not allow the production of usetul images where we would be interested

in point to point differences in isotope concentration in the body of less

than a factor of two. In trying to estimate kinetics, the total number of

counts available for analysis would be effectively higher, but not by an crder

of magnitude. The problems with rapid isotopic decay already limit biinetic

interpretations in large regions emitting thousands of counts (18).

Additional uncertainties due to device characteristics ignored by our

calibration procedure (19), and due to physical effects of photon scattering

and attenuation - not considered in this simulation - would increase the final

uncertainty to unproductive levels.
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